Publicado em 26 de set de 2012
Our Milky Way may harbor millions of black holes... the ultra dense remnants of dead stars. But now, in the universe far beyond our galaxy, there's evidence of something far more ominous. A breed of black holes that has reached incomprehensible size and destructive power. Just how large, and violent, and strange can they get?
A new era in astronomy has revealed a universe long hidden to us. High-tech instruments sent into space have been tuned to sense high-energy forms of light -- x-rays and gamma rays -- that are invisible to our eyes and do not penetrate our atmosphere. On the ground, precision telescopes are equipped with technologies that allow them to cancel out the blurring effects of the atmosphere. They are peering into the far reaches of the universe, and into distant caldrons of light and energy. In some distant galaxies, astronomers are now finding evidence that space and time are being shattered by eruptions so vast they boggle the mind.
We are just beginning to understand the impact these outbursts have had on the universe: On the shapes of galaxies, the spread of elements that make up stars and planets, and ultimately the very existence of Earth. The discovery of what causes these eruptions has led to a new understanding of cosmic history. Back in 1995, the Hubble space telescope was enlisted to begin filling in the details of that history. Astronomers selected tiny regions in the sky, between the stars. For days at a time, they focused Hubble's gaze on remote regions of the universe.
These hubble Deep Field images offered incredibly clear views of the cosmos in its infancy. What drew astronomers' attention were the tiniest galaxies, covering only a few pixels on Hubble's detector. Most of them do not have the grand spiral or elliptical shapes of large galaxies we see close to us today.
Instead, they are irregular, scrappy collections of stars. The Hubble Deep Field confirmed a long-standing idea that the universe must have evolved in a series of building blocks, with small galaxies gradually merging and assembling into larger ones.
A new era in astronomy has revealed a universe long hidden to us. High-tech instruments sent into space have been tuned to sense high-energy forms of light -- x-rays and gamma rays -- that are invisible to our eyes and do not penetrate our atmosphere. On the ground, precision telescopes are equipped with technologies that allow them to cancel out the blurring effects of the atmosphere. They are peering into the far reaches of the universe, and into distant caldrons of light and energy. In some distant galaxies, astronomers are now finding evidence that space and time are being shattered by eruptions so vast they boggle the mind.
We are just beginning to understand the impact these outbursts have had on the universe: On the shapes of galaxies, the spread of elements that make up stars and planets, and ultimately the very existence of Earth. The discovery of what causes these eruptions has led to a new understanding of cosmic history. Back in 1995, the Hubble space telescope was enlisted to begin filling in the details of that history. Astronomers selected tiny regions in the sky, between the stars. For days at a time, they focused Hubble's gaze on remote regions of the universe.
These hubble Deep Field images offered incredibly clear views of the cosmos in its infancy. What drew astronomers' attention were the tiniest galaxies, covering only a few pixels on Hubble's detector. Most of them do not have the grand spiral or elliptical shapes of large galaxies we see close to us today.
Instead, they are irregular, scrappy collections of stars. The Hubble Deep Field confirmed a long-standing idea that the universe must have evolved in a series of building blocks, with small galaxies gradually merging and assembling into larger ones.
Nenhum comentário:
Postar um comentário